

Integration Note

Automation/Lighting Panel Manufacturer:	Lutron Electronics Co. Inc.
Platforms:	HomeWorks QS
Versions:	All Lutron setup software (Designer)
	V. 6.2.0 or later
Specific Profile/Driver Version:	No driver required from Lutron. e-
	Node version 2.9 or later. Pilot
	software 4.4 build 2 or later.
	Note: newer functionality may require newer versions of e-Node firmware and/or Pilot software
Website location for profiles/drivers	No drivers required other than built-
	in functionality to e-Node device
Document Revision Date:	August 6, 2014

OVERVIEW AND SUPPORTED FEATURES

The Lutron lighting systems, RadioRA2 and HomeworksQS support the Converging Systems' family of motor and LED lighting control products using the Converging Systems e-Node device. This integration note is customized for the **HomeWorks QS** platform. If you desire to develop compatibility with RadioRa2 systems, please see the separate Integration Note referencing the RadioRA2 system.

Integration of the Converging Systems' platforms are enabled from Lutron keypads, and Android and iOS devices both locally and remotely.

CURRENT PROFILES SUPPORT THE FOLLOWING FEATURES

The following commands can be supported by installer entered commands into the Lutron setup page within the e-Node Ethernet device. Those commands which currently cannot be supported are grayed out.

General Commands	HSB Color Space Command	RGB Color Space Command	Correlated Color Temperature (CCT) Command
ON	HUE_UP	RED,R	CCT_UP

LED Lighting Commands

OFF	HUE_DOWN	GREEN,G	CCT_DOWN
EFFECT,#	HUE,H	BLUE,B	
STORE,#	SAT_UP	VALUE=R.G.B	
RECALL,#	SAT_DOWN	PRESET.X=XXX.XXX.XXX	
DISSOLVE.X=XX	SAT_S		
SEQRATE=XX	FADE_UP		
	FADE_DOWN		
	SET,L		
	STOP		
	COLOR-H.S.L		
	PRESETH.X=XXX.XXX.XXX		
	Special Commands for Luti	ron Home Control+ Application	
	HUE	· · ·	ССТ
	HUE Note: slider position provides		CCT Note: slider position
	HUE Note: slider position provides the trailing data		CCT Note: slider position provides the trailing data
	HUE Note: slider position provides the trailing data SET		CCT Note: slider position provides the trailing data
	HUE Note: slider position provides the trailing data SET Note: slider position provides the trailing data		CCT Note: slider position provides the trailing data
	HUE Note: slider position provides the trailing data SET Note: slider position provides the trailing data FADE		CCT Note: slider position provides the trailing data
	HUE Note: slider position provides the trailing data SET Note: slider position provides the trailing data FADE Note: slider position provides		CCT Note: slider position provides the trailing data
	HUE Note: slider position provides the trailing data SET Note: slider position provides the trailing data FADE Note: slider position provides the trailing data		CCT Note: slider position provides the trailing data
	HUE Note: slider position provides the trailing data SET Note: slider position provides the trailing data FADE Note: slider position provides the trailing data Bi-Directional Comman	ds	CCT Note: slider position provides the trailing data
	HUE Note: slider position provides the trailing data SET Note: slider position provides the trailing data FADE Note: slider position provides the trailing data Bi-Directional Comman COLOR=?	ds /ALUE=?	CCT Note: slider position provides the trailing data

Motor Commands

General Commands		
UP		
DOWN		
STOP		
RETRACT		
STORE,#		
RECALL,#		
PRESET.X=XX.XX		
	Bi-Directional Commands	
STATUS=?		
POSITION=?		

CURRENT PROFILES DO NOT SUPPORT THE FOLLOWING FEATURES

Other than any features that are grayed out below, the following features of Converging Systems' motor and lighting control devices are currently unsupported.

Page | 2

Any feature not specifically notes as supported should be assumed to be unsupported

WIRING DIAGRAM (for HomeWorks QS)

Figure 1

Wiring/Configuration Notes:

- 1. Maximum length of CS-Bus cabling from e-Node to the last ILC-100 using CAT5e or better cabling (and obeying the 1-1 pin-out requirements for the RJ-25-RJ25 cable) = 4000 feet
- 2. Maximum number of ILC-100 controllers and Converging Systems' keypads (if provided) that can exist on a single network connected to a single e-Node device = 254
- 3. Maximum number of e-Nodes that can exist on a Lutron RadioRA2 or HomeworksQS system = 254

Page | 3

Converging Systems Inc. 32420 Nautilus Drive Rancho Palos Verdes, CA 90275

© Converging Systems Inc. All Rights Reserved. E-Node, ILC-100, IMC-100, and IBT-100 are trademarks of Converging Systems Inc. All other trademarks are the property of their respective owners

#	Device	Manufacturer	Part Number	Protocol	Connector	Notes
1	HomeWorks QS processor	Lutron	HQP6-2-120 HomeWorks QS Processor	Ethernet	various	
2	Network Switch	Various	Various	Ethernet	RJ-45	
3	e-Node	Converging Systems	e-Node	Ethernet	RJ-45 (for Ethernet) RJ-25 for local bus	
4	Lighting Controller (or Motor Controller)	Converging Systems	ILC-100 or IMC-100 or (Stewart BRIC)	CS-Bus protocol	RJ-25 for CS- Bus communication	Must terminate beginning and end of bus with 120 ohm resister on pins 3/4

BILL OF MATERIALS (for HomeWorks QS)

Theory of Operation

The Converging System network controller and one or more connected CS-Bus compatible devices (LED or projection screen motors) is made operational with the targeted Lutron system by following a few simple steps. No drivers or changes to Lutron equipment in general are required to establish communication with Converging Systems equipment, although you may wish to fine tune the button logic in your Lutron project to generate the type of output commands which will most effectively control the Converging Systems equipment.

The following steps summarize the steps that will be required to complete this process. Details for each Step can be found immediately after this section.

-Step 1. Complete your Lutron programming with Designer software. Establish a **Telnet** Username with **Telnet Password** that you can allocate to enable the Converging Systems network connection.

-**Step 2**. Customize any actual Lutron hardware devices or Lutron phantom keypads (usually for sliders on the Lutron app) with specific types of buttons optimized to achieve the results desired. (Lutron button logic varies depending upon how these buttons are programmed initially by the installer using the Lutron Designer software.)

Page | 4

-Step 3. Input a minimum amount of communication information in order to have the Converging Systems' e-Node processor establish a Telnet connection to the HomeWorks QS processor (IP address of Lutron processor, dedicated Telnet Username and Telnet Password).

-**Step 4**. Establish links between targeted Lutron button pushes on Lutron hardware devices (or buttons or sliders on the Lutron app) and the desired behavior of the Converging Systems' lighting or motor controller(s).

STEP 1 (Telnet info and Lutron processor IP address)

Program into your Lutron processor a <u>dedicated</u> Telnet Username and Telnet Password for a Telnet channel that can be dedicated to the Converging Systems' interface. Telnet channels cannot be shared, so if you wish to have the Lutron Home Control + app and the Converging System application running, it is necessary to establish two separate Telnet channels for these two operations to occur. You can enter this Telnet information within the Lutron software **Tools/Configure Integration/Telnet Logins** tab as seen below in Figure 3.

ntegration			
	3rd Party Commands Telnet Logins		
Jsername	0	Password $ ext{theta}$	Allow Homeowner Editing
default		default	∡
HWQS1		ADMIN	1
HWQS2		ADMIN	A
HWQS3		ADMIN	A
HWQS4		ADMIN	A
Add Teinet	Login		

Figure 2

Page | 5

Also, take note of the IP address of your Lutron processor which is available from your **Activate Processor Tab**

Elle Edit Reports Tools Help		Lutron Designer	- C:\Users\CSI\Doc	uments\Lutron Desig	ner\july82014_4.lutx*				
design program activate proces	ssors	transfer	diagno	stics					
Sect a construction Beports Loois Heip design program activate process Image: Show only unactivated processors in the list below Sect a processor below and click the activate link next to the corresponding processor on the right Sect a processor below and click the activate link next to the corresponding processor on the right All Processors Found on Network are Activated Sect a processor source on the right Sect a processor source on the right	ssors Mame $\hat{\theta}$ > Processor 1 Activating processors w \odot Advanced Setting \odot Remote Access	Lutron Designer transfer Serial # 0 01013719 all send the conf is	C-CUVerN(CS)Doc diagno: DHCP + + iguration from the	UnrentSLUtron Desig Stics IP Address @ 192.168.10.252 e project to the pro- configuration	Subnet Mask 255,255,255.0 ccessor on the netwo settings.	Gateway θ 192.168.10.1 rk. This includes π	Status Good network informa	Cust 9 V	amize columns Action 0 Deactivate all other
Identity Selected Processor Refresh Activation Summary Processors 1 of 1									
Support Community https://forums.lutron.com/								Home	Works QS

Figure 3

Now enter the dedicated **Telnet Username** and **Telnet Password** below along with the **IP address** of your Lutron processor into the attached spreadsheet in *Appendix 3* at the end of this Integration Note for future reference:

STEP 2 (Lutron button-type programming)

Within HomeWorks QS, buttons can be created to behave in several discrete manners. Those relevant to our setup instructions are specified below. These button operations are summarized on the table below and described in further detail after the table. It is important to understand the discrete operations for how buttons behave, for the Converging Systems connected devices can only be programmed to respond to those output commands generated by Lutron. If those buttons do not generate the correct Lutron output codes, Converging Systems' products cannot properly respond. PERIOD.

Button Type	Operation	Lutro	on system s	oftware out	Cases where this type of button is desirable	
		Press On	Release	Double	Hold	
				Тар		
Type 1A	Single	" 3 " N/A N/A I			N/A	ALL OFF, RECALL (n), MOTOR STOP,

Page	6
------	---

	Action ("SA)					MOTOR UP (to end of travel), MOTOR DOWN (to end of travel)
Type 1B	Single with Hold ("SAH")	N/A	"4"	N/A	"5"	USER 1 (Recall and Store with Hold)
Type 1C	Single with Double Press option ("SADP")	"3"		"6"		LED ON/OFF (On with a single press, OFF with a double press)
Type 2	Dual Action ("DA")	"3"	"4"	N/A	N/A	SAT+/-, HUE+/-, CCT+/-, MOTOR JOG UP, MOTOR JOG DOWN
Type 3	Toggle ("TG")	"3"	N/A	N/A	N/A	Note : this Toggle command is <u>not</u> particularly useful for most CS-Bus operations, because for most implementations the Lutron system sends the same command once on button press, and then again upon button release (the LED on the Lutron button goes ON after the first button press and then goes OFF after the second button press to indicate the light has been turned off).
Type 4	RAISE/ LOWER ("RAISE") ("LOWER")	"3"	"4"	N/A	N/A	FADE UP, or FADE DOWN (or MOTOR UP, or MOTOR DOWN)

Type 1A- Single Action ("SA"). This is standard and most common operation that can be used for discrete operations such as ALL OFF, ALL ON, MOTOR STOP In this case the Lutron system generates a "**3**" from its processor, and no other output strings are generated.

Type 1B- Single Action with Hold ("SAH"). This is a useful derivative case from the standard Single Action operation. This is most useful where you desire a single button to both select a previously stored Color or Motor position, but with the additional functionality, that an extended hold will transmit a separate software string that can be utilized by CS-BUS to invoke a STORE command. In this case the Lutron system generates a "4" from its processor upon a Button Press/Release, a "5" upon a Hold.

Type 1C- Single Action with Double Press Option ("SADP"). This is a useful derivative case from the standard Single Action operation. This is most useful where you desire a single button to turn ON lighting elements with a single press, as well as turn OFF lighting elements with a

Page | 7

double press. In this case the Lutron system generates a "**3**" from its processor upon a single Button Press, a "**6**" upon a double Button Press.

Type 2-Dual Action ("DA"). This is a useful selection for selections such as Hue UP, Hue DOWN, Saturation UP, Saturation DOWN, Color Temperature UP, and Color Temperature DOWN. This is also useful for MOTOR JOG operations where you actually wish to hold the button until you want the motor to stop, at which point you would release the button. In this case the Lutron system generates a "**3**" from its processor upon a Button Press, a "**4**" upon a quick Button Release.

Type 3-Toggle ("TG"). This button type is presented for completeness but may not serve any particular function for most CS-Bus operations. This button logic is primarily targeted for Lutron keypads and touchscreen keypads which toggles ON the on-board LED or touchscreen indicator upon the first button push, and then turns OFF that same indicator on the subsequent button push. In this case the Lutron system generates a "3" from its processor upon a Button Press, and then generates a "3" upon the second Button Press as well. CS-Bus devices are looking for unique subsequent software strings for each new activity only (e.g. a "4" following a "3" for instance, or a "5" following a "3") and therefore receiving the same software string (e.g. a "3" following a "3") for a second button push operation is not applicable here.

Type 4- Special FADE ("RAISE" "LOWER"). Within HomeWorks QS, these are the only two buttons that have a different operation. These buttons are reserved for FADE type operations. When these buttons are pressed, the Lutron system generates a "**3**" but when these buttons are released, there is the special case of a "**4**" being generated. This logic is particular good only for our FADE UP and FADE DOWN LED commands which would provide a STOP command when the button is released. Alternatively, these buttons could also be used similarly to Type 2 button for Motor operation.

Required Action (Potentially). Now with this information in mind, update any of your Lutron Designer programming for each button programmed that you wish to trigger a Converging Systems' event in a unique way, if required. Also, take note under Tools/ Configure Integration/Integration seen in Figure 4 can be found the Integration IDs that will be used later in this Integration Note to link Lutron button pushes with Converging Systems' invoked CS-Bus commands.

Figure 4

STEP 3 (e-Node communication setup for Lutron/e-Node)

You will next need to enter several communication parameters within the e-Node Pilot application as part of the e-Node. These parameters are summarized in the below table.

Step	Setting	Choices Available within the Pilot application
1	IP Address (of e-Node)	It is recommended that the e-Node be set to static addressing in this environment. In order to change the factory default for the e-Node which is Dynamic addressing to Static addressing, follow these steps within e-node Pilot -change Static_IP address to desired setting -change Gateway_ADD to desired setting
2	Talpat Operation	-inally, change DHCP to DISABLED and hit RESTART
2		-Go to the Telnet tab and type in the address of the Lutron processor within the Adapter_IP entry. Within same page, make sure the LOGIN is set to ENABLE (alias for Telnet client Enabled)

Page | 9

3	Additional Lutron Processor Communication Information	 -Go to the Lutron tab and enter the particular type of Lutron processor to which you would like to connect. For this application note, select HOMEWORKS for HOMEWORKS QS -Under the CONNECTION tab, select ENABLE (for Telnet client) -On the same page for the LOGIN entry, select the Telnet username that you secured above and hit the ENTER key to save. -On the same page for the PASSWORD entry, select the Telnet the Telnet password that you secured above and hit the ENTER key to save.
4	Restart Enode to Save Settings	-Hit the RESTART button which reboots the e-Node and saves these new settings to the new defaults.

STEP 4 (CSI CS bus commands linkage to Lutron button pushes)

The final step is to enter within the spreadsheet in *Appendix 3* at the end of this *Integration Note* data relating to the targeted (i) Lutron button push, (ii) with its particular Integration ID, (ii) with its particular type of button push ("3", "4", "5","6," etc.), and (iv) the desired Converging Systems CS-Bus command that will be triggered onto the CS-Bus when a the specific Lutron button push is encountered by the e-Node. Finally after this is done, a subset of that data can be entered into the e-Node Pilot application. Although this seems complex, it is very quick to do and usually takes just a few minutes to complete an entire project.

Flowchart. The following flowchart shows that if a Lutron identified button (that is to say, a button with a known Device ID, a known button number, and a known mode of operation output string, such as a "3", a "4", a "5" or a "6") is activated, the software logic within the e-Node is able to translate that button push into a compatible CS-Bus command that can be directed to any CS-Bus compatible controller on that CS-Bus. In the below example, the noted button push generates a Telnet string of **~DEVICE,5,1,3** which is then translated by the e-Node to a CS-BUS command (entered by the programmer) as a **#2.7.1.LED=RECALL, 1** (in our example). This command causes the targeted Lutron button push to cause the Converging Systems lighting controller to turn on the factory programmed RED or Recall 1 color setting.

Page | 10

Theory of Operation- From Lutron Button Push to Converging Systems Controller Operation

e-Node "Lutron Tab" Programming.

The above diagram details the logical process that occurs from the point in time that a Lutron keypad button is pressed until a linked Converging Systems command is issued. From this information, you can determine exactly want operations you wish to cross-connect between Lutron and Converging Systems. You will enter that data in the form shown in the example below into the e-Node Pilot application under the LUTRON tab (again using the spreadsheet provided in *Appendix 3* for easy of data entry) and then from that spreadsheet, <u>you can now can easily transcribe that data directly into the e-Node Pilot application within the LUTRON tab.</u> Pay particular attention to the use of PERIODS (rather than commas) for Converging Systems' Zone/Group/Node addresses, and the use of COMMAS for the TRACK command and make sure for each entry where there is a TRACK entered, the associated LUT is populated.

Note: There is limited error-handling within the e-Node PILOT application, so must check your work carefully, and if all the data entries are valid, immediately after you populate the fields, your e-Node will be able to make the proper translations and your system should be operational.

Programming Note on Lutron Button LED Logic

HomeWorks QS offers a wealth of programming options to the dealer, particular with respect to the operation and logic of on-button Lutron LED indicators. Although it is beyond the scope of this Integration Note to provide adequate background on how the Lutron LED logic operates, we have provided specific field-tested suggestions for how the specific buttons incorporated within our example might be programmed. We have chosen to utilize two variables (one for lighting called the **ENODE**, and one for motor control called **SCREEN**). Within each of those custom variables (which we have created) we have added a number of discrete states (documented under "Variables") that can be assigned to each button action to enable the LED Logic to perform as expected. Linking these variables as documented below to each button, assures the on-button LEDs will (i) turn on when presets are selected, (ii) turn OFF when an OFF is selected, and (ii) momentary operate in the case of increment or decrement of a lighting level or motor jog. You may find this example helpful but you may also have your own tricks that you may wish to integrate separately. See the columns marked "LED Logic" and "Variable" for detailed settings here.

Page | 12

Note on Testing/Troubleshooting

We highly recommend launching the e-Node Pilot application and selecting the VIEW TRAFFIC window to make sure the proper commands that have been programmed can be seen on the CS-BUS. We can almost guarantee that if there is no appropriate CS-BUS command appearing in the VIEW TRAFFIC window, that the TRACK and LUT entries were not properly entered. You can also launch your computer's TELNET application, to verify the expected Lutron command strings are appearing on the IP bus. If those commands are NOT appearing on the IP bus, then there is no way the Converging Systems' e-Node can do its work.

Programming Example-Case A

Following is a simple example all of the button programming on the specified 10-button HomeWorks QS keypad (HQR-T10RL). This example assumes that all buttons have been programmed using an appropriate Type 1A (SA), Type 1B (SAH), Type 1C (SADP), Type 2 (DA), Type 3 (TG) or Type 4 (FADE) button type for each button to be programmed. Buttons within the table are color-coated as per the above button type (see pages 6-7 for more information on button types).

Figure 6

Marked Lutron Button*	Button Type	LED Logic	Variables	Desired Action	Lutron output string	CS Bus resultant command
Color 1	Type 1A- SA	Scene	y ^x Enode	-On button push, causes controller to go to	TRACK(1)=7,1,3	LUT(1)#2.1.1.LED=RECALL,1

Page	13
------	----

Converging Systems Inc. 32420 Nautilus Drive Rancho Palos Verdes, CA 90275

© Converging Systems Inc. All Rights Reserved. E-Node, ILC-100, IMC-100, and IBT-100 are trademarks of Converging Systems Inc. All other trademarks are the property of their respective owners

			(State 1)	Preset 1 (Recall, 1).		
Color 2	Type 1A-SA	Scene	y ^x Enode	-On button push, causes	TRACK(2)=7,2,3	LUT(2)#2.1.1.LED=RECALL,2
				controller to go to		
			(State 1)	Preset 2 (Recall, 2).		
HUE UP	Type 2-DA	Room	y ^x Enode	-On button push, causes	TRACK(3)=7,3,3	LUT(3)#2.1.1.LED=HUE_UP
			(un-	controller to go start		
		Note:	affected)	incrementing the HUE		
		logic		variable.	TRACK(4)=7,3,4	LUT(4)#2.1.1.LED=STOP
		is set		-With a button release,		
		to	y ^x Enode	the incrementing		
		Room	(un-	operation will		
			affected)	immediately cease.		
SAT UP	Type 2-DA	Room	y ^x Enode	-On button push, causes	TRACK(5)=7,4,3	LUT(5)#2.1.1.LED=SAT_UP
			(un-	controller to go start		
		Note:	affected)	incrementing the SAT		
		logic		variable.	TRACK(6)=7,4,4	LUT(6)#2.1.1.LED=STOP
		is set		-With a button release,		
		to	y ^x Enode	the incrementing		
		Room	(un-	operation will		
			affected)	immediately cease.		
SAT	Type 2-DA	Room	y ^x Enode	-On button push, causes	TRACK(7)=7,5,3	LUT(7)#2.1.1.LED=SAT_DOWN
DOWN			(un-	controller to go start		
		Note:	affected)	incrementing the SAT		
		logic		variable.	TRACK(8)=7,5,4	LUT(8)#2.1.1.LED=STOP
		is set		-With a button release,		
		to	y [*] Enode	the incrementing		
		Room	(un-	operation will		
			affected)	immediately cease.		
LED	Type 1-	Scene	y [*] Enode	-On button push, causes	TRACK(9)=7,16,3	LUT(9)#2.1.1.LED=ON
ON/OFF	SADP		(on)	controller to turn any		
				already OFF LEDS to		
				turn previous ON state.		
				-On double press,	TRACK(10)=7,16,	LUT(10)#2.1.1.LED=OFF
				causes controller to	6	
				turn any already ON		
			-Enode	LEDS to turn OFF.		
	Turne 1 CA	6	(Off)			
SCREEN	Type 1-SA	Scene	y Screen	-On button push, causes	1RACK(11)=7,6,3	LUT(11)#1.1.1.MOTOR=UP
UP			(UP)	connected projection		
				screen to MOVE UP.		
				Note: with Type 3		
				programming, a button		
				STOD commond		
	Tuno 1 SALL	Corre	^Х Г.ю! -	STOP command		
USER 1	Type 1-SAH	scene	y Enode	-On button push, causes	1 KACK(12) = 1, 1, 4	LUI(12) # 2.1.1.LED = RECALL, 10
			(on)	LEDS TO gO TO a USEK 1		
				setting (in this case		
				KECALL IOCATION #10)	IKACK(13)=7,7,5	LUT(13)#2.1.1.LED=STORE,10

Page | 14

				-If the button is HELD		
				for a preprogrammed		
			v ^x Enode	amount of time a		
			(User 1)	command is sent to the		
			(0301 1)	CS-Bus device to STORE		
				the current color setting		
				into its specified		
				momony location (i.e.		
				memory location (i.e.		
		Coore	^X Encode	On hutton nuch sources		
USER Z	туре 1-5Ап	Scene	y Enode	-On button push, causes	TRACK(14)=7,8,4	LUT(14)#2.1.1.LED=RECALL,11
			(on)	LEDS to go to a USER I		
				setting (in this case		
				RECALL location #10)	TRACK(15)=7,8,5	LUI(15)#2.1.1.LED=STORE,11
				-If the button is HELD		
			x	for a preprogrammed		
			y [°] Enode	amount of time, a		
			(User 2)	command is sent to the		
				CS-Bus device to STORE		
				the current color setting		
				into its specified		
				memory location (i.e.		
			~	memory location #11)		
USER 3	Type 1-SAH	Scene	y^Enode	-On button push, causes	TRACK(16)=7,9,4	LUT(16)#2.1.1.LED=RECALL,12
			(on)	LEDS to go to a USER 1		
				setting (in this case		
				RECALL location #10)	TRACK(17)=7,9,5	LUT(17)#2.1.1.LED=STORE,12
				-If the button is HELD		
			v	for a preprogrammed		
			y^Enode	amount of time, a		
			(User 3)	command is sent to the		
				CS-Bus device to STORE		
				the current color setting		
				into its specified		
				memory location (i.e.		
			~	memory location #12)		
SCREEN	Type 1-SA	Scene	y [×] Screen	-On button push, causes	TRACK(18)=7,10,	LUT(18)#1.1.1.MOTOR=DOWN
DOWN			(DOWN)	connected projection	3	
				screen to MOVE DOWN.		
				Note: With Type 3		
				programming, a button		
				release will not issue a		
				STOP command		
STOP	Type 1-SA	Scene	y ^x Screen	-On button push, causes	TRACK(19)=7,17,	LUT(19)#1.1.1.MOTOR=STOP
			(STOP)	connected projection	3	
				screen to STOP, if it is		
				currently moving.		
FADE	Lower		N/A	-On button push, FADES	TRACK(20)=7,24,	LUT(20)#2.1.1.LED=FADE_DOW
DOWN				LEDS DOWN	3	N
				-On button release,		

Page | 15

			STOPS the fade process	TRACK(21)=7,24, 4	LUT(21)#2.1.1.LED=STOP
FADE	Raise	N/A	-On button push, FADES	TRACK(22)=7,25,	LUT(22)#2.1.1.LED=FADE_UP
UP			LEDS UP	3	
			-On button release,		LUT(23)#2.1.1.LED=STOP
			STOPS the fade process	TRACK(23)=7,25,	
				4	

Programming Note: There is no requirement for the order in which you add commands, with the only caveat being that the TRACK(n) and LUT(n) index numbers for the same operation must relate to each other. Specifically, TRACK(1) is associated with LUT(1), TRACK(2) is associated with LUT(2), TRACK(3) is associated with LUT(3), etc.. There are a total of 256 unique **TRACKS**, and therefore 256 associated **LUTS** that can be utilized by programmer. You can have duplicate entries from one TRACK(n) entry to another TRACK(n) entry to enable two different CS-BUS commands to be invoked from the same LUTRON button push, which is effectively an easy way to program a macro in this environment, conceptually.

Appendix 1 Home Control+ Slider Application Notes

This section details Level 2 more sophisticated programming techniques. Several important topics will be covered:

-Lutron LED Button Logic handling

-Slider utilization within the Home Control+ application.

-Phantom Keypad Programming (for Home Control+ application)

-Additional Phantom Keypad Example

A. Lutron LED Button Logical Lutron Button LED indicators

Within the examples detailed within this Integration Note are contained hints that can be utilized to make sure the Lutron LED logic performs as desired. See Page 12 of this document ("**Programming Note on Lutron Button LED Logic**") for additional information here.

Also, within the examples throughout this document can be found customized settings and button selection hints that can be used to program with Lutron Designer to insure the best LED keypad logic. Pay particular attention to the columns titled "LED Logic" and "Variable" for customized settings that can be utilized to enable logical Lutron LED keypad logic. Also, thoroughly review the button type discussion on pages 6-9, for information on picking the correct button type vis-à-vis its LED button control logic. Although our examples have been demonstrated to work, you may desire to try your own tricks as well.

B. Standard Keypad Control—Standard Buttons with Operational Lutron Button LED indicators

Below can be seen a screen that reveals standard and actual hardware Lutron keypad previously programmed. Some of these buttons refer to the control of Converging System's LED lighting control products, while other buttons refer to the control of Converging Systems' motor (projection screen) control products.

Page | 17

Programming Steps-Case A. Actual programming steps to support Figure 7 below are detailed on pages 13-16 above. No changes are required to generate this specific screen within the Home Control + application. Your specific implementation may vary.

iPad 중	12:26 AM	100% = +
Areas / Rooms	Whole Home	
Whole Home		
Lab Area >		
	Lights Keypads	
	Keypads	Edit
	Area 1 > 10 button handheld	
	SCREEN +	COLOR 1
	USER 1	COLOR 2
	USER 2	HUE+
	USER 3	SAT +
	SCREEN -	SAT -
	V A STOP	ON/OFF
	• • • • •	
	A 🕛 🕞 🛗	
	HomeGlance Control & Monitor Energy Schedules	

C. Slider Control (Full color Hue, Saturation, Brightness as well as Correlated Color Temperature Control--CCT)

Below can be seen two screens that reveal (i) standard **Hue**, **Saturation**, and **Brightness** control as well (ii) **Correlated Color Temperature** (CCT) control. All of these controls are derived from the creation of set of Lutron phantom keypads with the Lutron Designer application but which utilize a derivative of the standard CS-Bus command set to interrelate with sliders only.

Page | 18

Programming Steps-Case B. Actual programming sets for the e-Node Pilot application are provided after the screens.

Figure 9

The above Slider can be easily integrated into the above project with the insertion of the following steps:

Marked Lutron	Desired Action	Lutron output string	CS Bus resultant command
Button		entry	
Hue Slider	-On movement of slider from	TRACK(50)=23,1	LUT(50)#2.1.1.LED=HUE
	0% to 100%, Hue commands are		
	transmitted to CS-Bus system.	Note: there is no trailing	Note: there is no trailing
		comma and third	characters after the HUE
	Note: HUE of 0 or 100%	number in this slider	command in this slider case
	equates to RED, while a HUE of	case	
	80 equates of GREEN, and a HUE		
	of 160 equates to BLUE		
Sat Slider	-On movement of slider from	TRACK(51) =25,1	LUT(51)#2.1.1.LED=SAT
	0% to 100%, SAT commands are		
	transmitted to CS-Bus system.	Note: there is no trailing	Note: there is no trailing
		comma and third	characters after the SAT
	Note: SAT of 0 is fully saturated	number in this slider	command in this slider case
	(very white) while a SAT of 100	case	
	preserves the HUE of the		
	original selected color		
Brightness	-On movement of slider from	TRACK(52)=28,1	LUT(52)#2.1.1.LED=SET
Slider	0% to 100%, Brightness (FADE)		
	commands are transmitted to	Note: there is no trailing	Note: there is no trailing
	CS-Bus system.	comma and third	characters after the SET
		number in this slider	command in this slider case
	Note: FADE of 0 is fully OFF	case	
	(dark) while a FADE of 100 is		
	fully ON		
CCT Slider	-On movement of slider from	TRACK(53)=21,1	LUT(53)#2.1.1.LED=CCT
(Color	0% to 100%, Correlated Color	Note: there is no trailing	
Temperature)	Temperature (CCT) commands	comma and third	Note: there is no trailing
	are transmitted to CS-Bus	number in this slider	characters after the CCT
	system.	case	command in this slider case
	Note: CCI of U% equates to a		
	CCI of 1800K while CCT of 100%		
	equates to a CCT of 7000K		

D. Additional Phantom Keypad Example

Below can be seen a screen that reveals **Correlated Color Temperature** (CCT) control. In this case, there is no real keypad, but only a representation of this keypad in the Home Control + application. All of these controls are derived from the creation of set of Lutron phantom

keypads within the Lutron Designer application and with only simple "connection" within the e_Node Pilot application to make the virtual keypad actually perform.

Areas / Rooms		Whole Home		
Whole Home Lab Area	>	Lights Keypad	ds	
		Keypads	> Virtual Keypad Color Ter	Edit
			Color T +	6000 K
				5000 K
				3500 K
				2800 K
			Color T -	1800 K
			CCT STOP	ON/OFF
			r • • • •	

Programming Steps-Case C. Actual programming steps to support the virtual keypad shown in

Figure 10 above are presented within this section. Simply add in this case a virtual keypad into your Designer software and make a **Link Assignment** and label it appropriately. Determine the **Integration ID** for this virtual keypad and use that information below. Your specific implementation may vary.

Marked Lutron Button*	Button Type	LED Logic	Variables	Desired Action	Lutron output string	CS Bus resultant command
6000K	Type 1A- SA	Scene	y ^x Enode (State 6000K)	-On button push, causes controller to go to CCT of 6000K.	TRACK(60)=57,1,3	LUT(60)#2.1.1.LED=CCT,6000
5000K	Type 1A-SA	Scene	y ^x Enode (State	-On button push, causes controller to go to CCT of 5000K	TRACK(61)=57,2,3	LUT(61)#2.1.1.LED=CCT,5000

			5000K)	2).		
3500К	Type 1A-SA	Scene	y ^x Enode (State 3500K)	-On button push, causes controller to go to CCT of 3500K	TRACK(62)=57,3,3	LUT(62)#2.1.1.LED=CCT,3500
2800K	Type 1A-SA	Scene	y ^x Enode (State 2800K)	-On button push, causes controller to go to CCT of 2800K.	TRACK(63)=57,4,3	LUT(63)#2.1.1.LED=CCT,2800
1800K	Type 1A-SA	Scene	y ^x Enode (State 1800K)	-On button push, causes controller to go to CCT of 1800K.	TRACK(64)=57,5,3	LUT(64)#2.1.1.LED=CCT,1800
LED ON/OFF	Type 1- SADP	Scene	y [×] Enode (on) -Enode (off)	-On button push, causes controller to turn any already OFF LEDS to turn previous ON state. -On double press, causes controller to turn any already ON LEDS to turn OFF.	TRACK(65)=57,16,3 TRACK(66)=57,16,6	LUT(65)#2.1.1.LED=ON LUT(66)#2.1.1.LED=OFF
Color T +	Type 2-DA	Room Note: logic is set to Room	y [×] Enode (un- affected)	-On button push, causes controller to go start incrementing the HUE variable.	TRACK(67)=57,6,3	LUT(67)#2.1.1.LED=CCT_UP
Color T -	Type 2-DA	Room Note: logic is set to Room	y [×] Enode (un- affected)	-On button push, causes controller to go start incrementing the SAT variable.	TRACK(68)=57,10,3	LUT(68)#2.1.1.LED=CCT_DOWN
CCT STOP	Type 1-SA	Scene	y [×] Screen (STOP)	-On button push, causes connected projection screen to STOP, if it is currently moving.	TRACK(69)=57,17,3	LUT(69)#2.1.1.LED=STOP
FADE DOWN	Lower		N/A	-On button push, FADES LEDS DOWN -On button release,	TRACK(20)=57,24,3 TRACK(21)=57,24,4	LUT(20)#2.1.1.LED=FADE_DOWN LUT(21)#2.1.1.LED=STOP

Page | 22

			STOPS the fade process		
FADE UP	Raise	N/A	-On button push, FADES LEDS UP	TRACK(22)=7,25,3	LUT(22)#2.1.1.LED=FADE_UP
			-On button release, STOPS the fade process	TRACK(23) =7,25,4	LUT(23)#2.1.1.LED=STOP

Page | 23

Appendix 2 Common Mistakes

Common Mistakes

1. Forgetting to set turn on the Telnet Login under the **TELNET** page (to ENABLE). The Lutron processor does require a valid username and password, If **TELNET** is set to no login, the e-Node and the Lutron processors will fail to communicate.

2. Forgetting to input accurate Zone/Group/Nodes addresses within the LUTRON tab. The factory defaults will work with some systems but certainly, if your particular lighting or motor controllers do not function, check these addresses.

3. Forgetting to press the **RESTART** button within e-Node Pilot application after changes on the **NETWORK**, **TELNET**, or **LUTRON** pages are made.

4. Forgetting to match a valid LUT for each related TRACK within e-Node Pilot or the web application.

5. Forgetting to properly use COMMAS within the TRACK section or failure to properly use PERIODS within the LUT section of the e-Node Pilot application.

Here is an example that works (commas with TRACK and periods with LUT):

$TPACK(1) \leq 1 A$	
TRACK(1) 5,1,4	LUT(1) #2.1.1.LED=FADE_UP

Here is an example THAT WILL NOT WORK

TRACK(1) 5.1.4	LUT(1) #2,1,1,LED=FADE_UP

Page | 24

Appendix 3 Spreadsheet

Telnet Username	
Telnet Password	
IP address of the Lutron	,,,,,,,,,,,
primary processor	

(note RED BOLD Column Entries below are required for Programming)

Lutron button targeted for connection to Converging Systems LED or Motor operation						Desired outcome when Lutron button is pushed	Command that needs to be entered into e- Node Pilot application ¹	
Index		Button Alias ¹	Integration ID	Button Number	Button Logic		Descriptive Summary ²	Actual programming string ³
		Recall 1	(e.g.) 5•	(e.g) 1•	(e.g.) 3•		(e.g.)Color goes to Recall 1	(e.g.) #2.1.1.LED=RECALL,1
(1)								
(2)								
(3)								
(4)								
(5)								
(0) (7)								
(7)								
(9)								
(10)								
(11)								
(12)								
(13)								
(14)								
(15)								
(16)								
(17)								
(18)								
(19)								
(20)								
(21)								
(22)								
(23)								
(24)								

(Up to 256 indexes are available, please make additional copies of this table as needed.)

Page | 25

¹Note: CS-Bus commands that can be utilized are described in a separate document entitled "Third-Party CS-Bus Device Driver Toolkit-Programmers Guide (DDK) which can be downloaded from http://www.convergingsystems.com/inres_programmingdesignkit.htm

²These entries are not required for programming but are only provided to assist in the programmer's ease of project documentation.

¹These programming strings assume a pre-programmed CS-Bus device with a Zone address of 2, a Group address of 1, and Node address of 1. The factory default for lighting controllers is Z.G.N= 2.1.0 while the defaults for motor controllers is Z.G.N=1.1.0. The e-Node Pilot application is required to change the factory default address to a unique address. The device address shown above as #2.1.1 can be any address from 1-254 per field. This address would need to have been programmed for the specific device being controller using the e-Node Pilot application also available from Converging Systems at

http://www.convergingsystems.com/customerportal/1000/downloads.htm#anch4

Page | 26